LESSON PLAN Name of the faculty : Dr. Neetu Gupta Discipline : EIC Subject : Operational Research Programme : B.Tech. Semester : Eighth Work Load for this Subject : 04 (Lectures) = 04 Hours/Week | Week | Lecture | Topic (Excluding assignment and test) | |-----------------|-----------------|---| | | day | | | 1 st | 1 st | Different types of O.R. models, their construction and general methods of | | | | solution. | | | 2 nd | Continue | | | 3 rd | Continue | | | 4 th | Linear Programming Problem-Formulation | | 2 nd | 1 st | Graphical solution | | | 2 nd | Problems based on Graphical method | | | 3 rd | The Standard form of the L.P. Model | | | 4 th | Some Definitions related to solution of the L.P.P. | | 3 rd | 1 st | The Simplex Method | | | 2 nd | Continue | | | 3 rd | Problems based on the Simplex Method | | | 4 th | The dual of L.P.P. | | 4 th | 1 st | Continue | | | 2 nd | Theorems based on the duality | | | 3 rd | Primal dual relationship | | | 4 th | Dual simplex method | | 5 th | 1 st | Continue | | | 2 nd | Sensitivity analysis | | | 3 rd | Transportation Problem-its solution and applications | | | 4 th | Continue | | 6 th | 1 st | Continue | | | 2 nd | Continue | | | 3 rd | Transportation Problem -Problems for practice | | | 4 th | The assignment model | | 7 th | 1 st | The assignment model-Problems for practice | | | 2 nd | Travelling salesman problem | | | 3 rd | Network Minimisation | | | 4 th | Continue | | 8 th | 1 st | Shortest route problem | | | 2 nd | Continue | | | | | | | 3 rd | Maximum Flow Problem | |------------------|-----------------|--| | | 4 th | Continue | | 9 th | 1 st | Project of scheduling by PERT, CPM | | | 2 nd | Continue | | | 3 rd | Continue | | | 4 th | Problems of PERT ,CPM | | 10 th | 1 st | Critical path calculations | | | 2 nd | Construction of the time chart and resource leveling | | | 3 rd | Continue | | | 4 th | Continue | | 11 th | 1 st | Integer programming-examples, method and algorithms | | | 2 nd | Continue | | | 3 rd | Continue | | | 4 th | Dynamic programming – Examples of D.P. Models | | 12 th | 1 st | Continue | | | 2 nd | Continue | | | 3 rd | Bellman's principle of optimality | | | 4 th | Continue | | 13 th | 1 st | Continue | | | 2 nd | Method of Recursive optimization | | | 3 rd | Continue | | | 4 th | Problems based on Method of Recursive optimization |