LESSON PLAN

Name of the faculty	:	Dr. Neetu Gupta
Discipline	:	EIC
Subject	:	Operational Research
Programme	:	B.Tech.
Semester	:	Eighth

Work Load for this Subject : 04 (Lectures) = 04 Hours/Week

Week	Lecture	cture Topic (Excluding assignment and test)	
	day		
1 st	1 st	Different types of O.R. models, their construction and general methods of	
		solution.	
	2 nd	Continue	
	3 rd	Continue	
	4 th	Linear Programming Problem-Formulation	
2 nd	1 st	Graphical solution	
	2 nd	Problems based on Graphical method	
	3 rd	The Standard form of the L.P. Model	
	4 th	Some Definitions related to solution of the L.P.P.	
3 rd	1 st	The Simplex Method	
	2 nd	Continue	
	3 rd	Problems based on the Simplex Method	
	4 th	The dual of L.P.P.	
4 th	1 st	Continue	
	2 nd	Theorems based on the duality	
	3 rd	Primal dual relationship	
	4 th	Dual simplex method	
5 th	1 st	Continue	
	2 nd	Sensitivity analysis	
	3 rd	Transportation Problem-its solution and applications	
	4 th	Continue	
6 th	1 st	Continue	
	2 nd	Continue	
	3 rd	Transportation Problem -Problems for practice	
	4 th	The assignment model	
7 th	1 st	The assignment model-Problems for practice	
	2 nd	Travelling salesman problem	
	3 rd	Network Minimisation	
	4 th	Continue	
8 th	1 st	Shortest route problem	
	2 nd	Continue	

	3 rd	Maximum Flow Problem	
	4 th	Continue	
9 th	1 st	Project of scheduling by PERT, CPM	
	2 nd	Continue	
	3 rd	Continue	
	4 th	Problems of PERT ,CPM	
10 th	1 st	Critical path calculations	
	2 nd	Construction of the time chart and resource leveling	
	3 rd	Continue	
	4 th	Continue	
11 th	1 st	Integer programming-examples, method and algorithms	
	2 nd	Continue	
	3 rd	Continue	
	4 th	Dynamic programming – Examples of D.P. Models	
12 th	1 st	Continue	
	2 nd	Continue	
	3 rd	Bellman's principle of optimality	
	4 th	Continue	
13 th	1 st	Continue	
	2 nd	Method of Recursive optimization	
	3 rd	Continue	
	4 th	Problems based on Method of Recursive optimization	