SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

SCHEME & SYLLABI

OF

M.TECH.
MANUFACTURING TECHNOLOGY & AUTOMATION

w.e.f. 2018 -2019
(as per AICTE model scheme)

DEPARTMENT OF MECHANICAL ENGINEERING

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
J.C. Bose University of Science and Technology, YMCA, Faridabad

(A Haryana State Govt. University)

VISION

J.C. Bose University of Science and Technology, YMCA, Faridabad aspires to be a nationally and internationally acclaimed leader in technical and higher education in all spheres which transforms the life of students through integration of teaching, research and character building.

MISSION

- To contribute to the development of science and technology by synthesizing teaching, research and creative activities.
- To provide an enviable research environment and state-of-the-art technological exposure to its scholars.
- To develop human potential to its fullest extent and make them emerge as world class leaders in their professions and enthuse them towards their social responsibilities.
Department of Mechanical Engineering

VISION
To be a centre of excellence by producing high caliber, competent and self-reliant mechanical engineers, who possess scientific temperament and would engage in activities relevant to industries with ethical values and flair to research.

MISSION
- To provide efficient engineers for global requirements by imparting quality education.
- To explore, create and develop innovations in various aspects of engineering through industries and institutions.
- To emphasize on practical skills and socially relevant technology.
ABOUT THE DEPARTMENT

YMCA University of Science & Technology, Faridabad established in 2009, formerly known as YMCA Institute of Engineering, Faridabad, was established in year 1969 as a Joint Venture of Govt. of Haryana and National Council of YMCA of India with active assistance from overseas agencies of West Germany to produce highly practical oriented personnel in specialized fields of engineering to meet specific technical manpower requirements of industries. Mechanical Engineering Department was started in 1969 and has been conducting B.Tech Course in Mechanical Engineering of 4-Years duration since 1997. Students are admitted through centralized counseling nominated by state government in 1st Year and 2nd year through lateral entry entrance test. The total intake for the B.Tech programme is 120 and 24 through LEET in second year. Besides under graduate degree courses, it is also running M.Tech Mechanical Engineering Course (with specialization in Manufacturing Technology and Automation) and Ph.D. All courses are duly approved by AICTE/ UGC. The Mechanical Engineering Department has been well known for its track record of employment of the pass out students since its inception.

The Department has four storey building with 08 class rooms, 14 laboratory, three workshops, twelve offices, Seminar Hall and Conference Hall. It has established Centre of Excellence with Danfoss Industries (P) Ltd in the area of ‘Climate and Energy’ and one with Daikin in the field of ‘Refrigeration and Air Conditioning’. It has excellent faculty with 9 Professors, 04 Associate Professors and 15 Assistant Professors. The various syllabi of UG/PG courses in Mechanical Engineering Department, has been prepared with active participation from Industry. The Department is organizing number of expert lectures from industry experts for students in every semester. Seven month training is mandatory for every B.Tech student. Emphasis has been given on project work and workshop for skill enhancement of students. Choice based credit system allows students to study the subjects of his/her choice from a number of elective courses /audit courses.
PROGRAMME OUTCOMES (POs)

M.Tech. Engineering students will have following capabilities:

PO1 An ability to independently carry out research /investigation and development work to solve practical problems of Manufacturing Technology and Automation Engineering.

PO2 An ability to write and present a substantial technical report/document

PO3 Students should be able to demonstrate a degree of mastery in the area of Manufacturing Technology and Automation Engineering. The mastery should be at a level higher than the requirements in the bachelor program of Mechanical Engineering

PO4 An ability to use research-based knowledge and research methods including design of experiments, analysis and interpretation of data for the solution of complex problems of manufacturing industries/institutions

PO5 An ability to develop and apply computer based software and hardware tools for the analysis of problems related to mechanical design, manufacturing and automation fields.

PO6 An ability to apply the acquired knowledge to assess societal, safety, ethical issues and subsequently design / develop mechanical equipments and systems.
Curriculum Structure – Semester-wise

First Semester:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Marks Weightage</th>
<th>Course Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMTA-101</td>
<td>Computer Integrated Manufacturing</td>
<td>3-0-0</td>
<td>3</td>
<td>25</td>
<td>Core-I</td>
</tr>
<tr>
<td>MMTA-102</td>
<td>Welding & Allied Process (Common with M.Tech-Mechanical Engineering, Manufacturing & Automation)</td>
<td>3-0-0</td>
<td>3</td>
<td>25</td>
<td>Core-II</td>
</tr>
<tr>
<td>MMTA-103</td>
<td>Discipline specific Elective-I</td>
<td>3-0-0</td>
<td>3</td>
<td>25</td>
<td>Programme Elective-I</td>
</tr>
<tr>
<td>MMTA-104</td>
<td>Discipline specific Elective-II</td>
<td>3-0-0</td>
<td>3</td>
<td>25</td>
<td>Programme Elective-II</td>
</tr>
<tr>
<td>MMTA-105</td>
<td>Manufacturing & Automation Lab-I</td>
<td>0-0-4</td>
<td>2</td>
<td>15</td>
<td>Core</td>
</tr>
<tr>
<td>MMTA-106</td>
<td>Manufacturing & Automation Lab-II</td>
<td>0-0-4</td>
<td>2</td>
<td>15</td>
<td>Core</td>
</tr>
<tr>
<td>RMI-101</td>
<td>Research Methodology and IPR</td>
<td>2-0-0</td>
<td>2</td>
<td>25</td>
<td>Core</td>
</tr>
<tr>
<td>AUD</td>
<td>Audit Course - 1</td>
<td>2-0-0</td>
<td>0</td>
<td>-</td>
<td>Audit</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16-0-8</td>
<td>18</td>
<td>155</td>
<td></td>
</tr>
</tbody>
</table>
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

Discipline specific Elective-I

MMTA-103-1 Design, Planning & Control of Production Systems *(Common with M.Tech-Mechanical Engineering, Manufacturing & Automation)*

MMTA-103-2 CAD/CAM *(Common with M.Tech-Mechanical Engineering, Manufacturing & Automation)*

MMTA-103-3 Total Quality Management

MMTA-103-4 Supply Chain Management

Discipline specific Elective-II

MMTA-104-1 Foundry Technology

MMTA-104-2 Robotics Engineering

MMTA-104-3 Machine Tool Dynamics

MMTA-104-5 Mechatronics Product Design

Audit course 1 & 2

AUD-01A English for Research Paper Writing

AUD-02A Disaster Management

AUD-03A Sanskrit for Technical Knowledge

AUD-04A Value Education

AUD-05A Constitution of India

AUD-06A Pedagogy Studies

AUD-07A Stress Management by Yoga

AUD-08A Personality Development through Life Enlightenment Skills
Second Semester:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Marks Weightage</th>
<th>Course Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMTA-201</td>
<td>Manufacturing Technology</td>
<td>3-0-0</td>
<td>3</td>
<td>25 75</td>
<td>Core-III</td>
</tr>
<tr>
<td>MMTA-202</td>
<td>Automation in Manufacturing</td>
<td>3-0-0</td>
<td>3</td>
<td>25 75</td>
<td>Core-IV</td>
</tr>
<tr>
<td>MMTA-203</td>
<td>Discipline specific Elective-III</td>
<td>3-0-0</td>
<td>3</td>
<td>25 75</td>
<td>Programme Elective-III</td>
</tr>
<tr>
<td>MMTA-204</td>
<td>Discipline specific Elective-IV</td>
<td>3-0-0</td>
<td>3</td>
<td>25 75</td>
<td>Programme Elective-IV</td>
</tr>
<tr>
<td>MMTA-205</td>
<td>Manufacturing & Automation Lab-III</td>
<td>0-0-4</td>
<td>2</td>
<td>15 35</td>
<td>Core</td>
</tr>
<tr>
<td>MMTA-206</td>
<td>Manufacturing & Automation Lab-IV</td>
<td>0-0-4</td>
<td>2</td>
<td>15 35</td>
<td>Core</td>
</tr>
<tr>
<td>AUD</td>
<td>Audit Course – 2</td>
<td>2-0-0</td>
<td>0</td>
<td>-</td>
<td>Audit</td>
</tr>
<tr>
<td>MMTA-207</td>
<td>Mini-Project</td>
<td>0-0-4</td>
<td>2</td>
<td>25 75</td>
<td>Core</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14-0-12</td>
<td>18</td>
<td>155 445</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMTA-203-1</td>
<td>Project Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMTA-203-2</td>
<td>Mechanical Behavior of Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMTA-203-3</td>
<td>Principles of Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMTA-203-4</td>
<td>Finite Element Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMTA-204-1</td>
<td>Material Management (Common with M.Tech-Manufacturing & Automation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMTA-204-2</td>
<td>Quality control techniques (Common with M.Tech-Mechanical Engineering, Manufacturing & Automation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMTA-204-3</td>
<td>Artificial Intelligence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMTA-204-4</td>
<td>Industrial Inspection (Common with M.Tech.-Mechanical Engineering, Manufacturing & Automation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Third Semester:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Marks Weightage</th>
<th>Course Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMTA-301</td>
<td>Discipline specific Elective-V</td>
<td>3-0-0</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>OEC</td>
<td>Open Elective</td>
<td>3-0-0</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MMTA-302</td>
<td>Dissertation (Phase - I)</td>
<td>0-0-20</td>
<td>10</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6-0-20</td>
<td>16</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

Discipline specific Elective-V
- MMTA-301-1 Advanced Theory of Vibrations
- MMTA-301-2 Value Engineering
- MMTA-301-3 Design & Metallurgy of welded joints (*Common with M.Tech-Manufacturing & Automation*)
- MMTA-301-4 Maintenance Engineering

Open Elective
- OEC-101A Business Analytics
- OEC-102A Industrial Safety
- OEC-103A Operations Research
- OEC-104A Cost Management of Engineering Projects
- OEC-105A Composite Materials
- OEC-106A Waste to Energy
Fourth Semester:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Marks Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMTA-401</td>
<td>Dissertation (Phase - II)</td>
<td>0-0-32</td>
<td>16</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>375</td>
</tr>
</tbody>
</table>

Total Credits for the programme = 18 + 18 +16 +16 = 68
Semester I

MMTA-101 Computer Integrated Manufacturing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: Computer Integrated Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Credits: 3</td>
<td>Sessional: 25 Marks</td>
</tr>
<tr>
<td>L T P Total</td>
<td>Theory: 75 Marks</td>
</tr>
<tr>
<td>3 0 0 3</td>
<td>Total: 100 Marks</td>
</tr>
<tr>
<td></td>
<td>Duration of Exam: 3 Hours</td>
</tr>
</tbody>
</table>

Course Objectives:
1. Explain the basic concepts of computer integrated manufacturing.
2. Illustrate the numerical control and part programming.
3. Study the concept of computer aided quality control and material handling.

Course Outcomes:
At the end of the course the students should be able to:
1. Acquire knowledge about computer technology, FMS and CIM
2. Understand the basics of NC, CNC and DNC systems and to compare them
3. Develop the part programs for components to be machined on CNC machining and turning centres
4. Demonstrate the knowledge of AGVs and Robots as advanced material handling systems
5. Understand the basics of CMM and Machine vision system and to relate this knowledge in quality improvement of components

Syllabus Contents:
Unit 1:
Introduction: CAD/ CAM defined, computer technology: introduction, central processing unit, types of memory, input/ output, the binary number system, computer programming languages. Role of CAD/CAM in improving the product cycle. Introduction to CIM. Applications of computers in CIM.
Unit 2:
Conventional Numerical Control: basic components of NC system, NC motion control, system, applications of NC, advantages and disadvantages of NC, problems with conventional NC, NC controller technology, computer Numerical control, advantages of CNC, functions of CNC, Direct Numerical Control, components of a DNC system, functions of DNC, advantages of DNC.

Unit 3:
NC part programming: introduction, punched tapes in NC, tape coding and format, NC words, manual part programming, computer assisted part programming, The part programmer’s job, the computer’s job, NC part programming languages, APT language, geometry statements, motion statements, post processor statements, auxiliary statements.

Unit 4:
Robotics technology: joints and links, common robot configuration, work volume, drive systems, types of robot control, accuracy and repeatability, end effectors, sensors in robotics, applications of robots.

Unit 5:
Automated material Handling and FMS.: material handling function, types of material handling equipments, conveyor systems, types of conveyors, automated guided vehicle system, applications, FMS, components of a FMS, types of systems, where to apply FMS technology, FMS workstation, planning the FMS.

Unit 6:
Computer aided quality control: Introduction, the computer in QC, contact and non-contact Inspection methods- optical and non-optical, computer aided testing. Coordinate measuring machine (CMM) - its construction, drive systems, programming methods, software’s used in CMM applications and benefits of CMM. Machine Vision System- its basic functions, Image
acquisition and digitization, Image processing and analysis, Interpretation, applications of machine vision system.

Unit 7:
Computer Integrated Manufacturing systems: Introduction, Technologies used in CIM, Difference between CIM and FMS, CIM hierarchy system, Implementation process of CIM, applications and benefits of CIM.

Reference Books:
1. CNC Technology and Programming—Tilak Raj
3. CAD/CAM : - Zimmers and Groover (PHI)
4. Approach to computer integrated design and manufacturing :- Nanua Singh (John Wiley and sons)
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-102 Welding & Allied Process

No. of Credits: 3
L T P Total
3 0 0 3

Sessional: 25 Marks
Theory : 75 Marks
Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study essential concepts for welding parameters and welding processes. To study various techniques for metal spraying and thermal cutting processes. To study the various techniques of welding automation.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand principles of various traditional and newer welding processes
2. Develop concept of welding specific materials such as plastics, stainless steel.
3. Develop concept and techniques of welding automation.
4. Analyze methods of advanced welding processes like underwater welding.
5. Analyze arc welding parameter section and types of metal transfer.
6. Understand concept of thermal spraying and thermal cutting of metals.

Syllabus Contents:

Unit 1:
Introduction: Review of welding processes like gas, arc and resistance welding. Weld bead geometry and shape factors, Weld dilution.

Unit 2:
Welding Power Sources: Types of power sources, External V-I characteristics for constant current and constant voltage power sources, Rectifiers, Solid-state Rectifiers, Inverter systems, Duty cycle.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 3:
Arc Welding Consumables and Metal Transfer: Types of electrodes, AWS and Indian system of classification and coding of covered electrode for mild steel, Shielding gases and associated mixtures. Types of metal transfer, Short circuit/ dip transfer, Free flight, Globular type, Spray type, Forces affecting metal transfer.

Unit 4:

Unit 5:
Other advanced welding processes: Introduction, main features and applications of Ultrasonic welding, Friction welding, Explosive welding and Friction Stir welding, Introduction, methods and applications of Underwater Welding.

Unit 6:

Unit 7:
Unit 8:

Reference Books:
1. Modern Welding Technology: by Howard B. Cary and Scott C. Helzer, (Pearson Education)
2. Welding and Welding Technology: by R. Little (TMH)
3. Welding Processes and Technology: by R. S. Parmar (Khanna Publishers)
Course Objectives:
To study life cycle approach both for production system and new product development & compare production system with service system. Clarify various MRP models in production planning & sequencing and scheduling of the job on the machines. Understand the utility of forecasting in planning of production system.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Develop life cycle approach to new product development and production system and understand their inherent characteristics.
2. Create logical approach to make or buy decisions, plant location, layout and line balancing.
3. Estimate demand of the product using forecasting techniques and analyse error.
4. Generate MRP-I, MRP-II and ERP models for a production system.
5. Develop competency in scheduling and sequencing of manufacturing operations.

Syllabus Contents:
Unit 1:
Introduction to production systems: Aim of production system, generalized model of Production systems, Types and characteristics of production and service systems, Life cycle approach to production management. Case studies of production and service systems.

Unit 2:
Product development and design: Product life cycle, New product development and process selection, stages in new product development, use of decision tree, Breakeven Analysis.
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

Make/buy decision, Problems for Break-even Analysis Non-linearity in B.E. Analysis, selection of location among alternatives – A case study, systematic layout planning, objectives, types, comparison and application of different types of layouts. Assembly line balancing concept and problems for maximum line efficiency.

Unit 3:
Planning and control for production system: Importance, objectives and types of forecasting methods, Analysis and comparison standard error of estimate, Material Requirement Planning (MRP) objective, dependent demand, inputs to MRP, MRP-II, MRP model, ERP. Element of monitoring and follow up.

Unit 4:
Sequencing and scheduling: Criteria for sequencing, priority sequencing and rules, n job 2 machine, n job 3 machine, n job m machine problems. Scheduling of flow shops and job shops. Gantt chart.

Reference Books:
1. Modern Production / operations management 8th ed. - Buffa, Elwood and Sarin, Rakesh (Wiley)
2. Elements of Production, planning and control - Eilon Samuel (Macmillan)
3. Production control: A quantitative approach - Biegel. J (Prentice Hall)
4. Industrial Engineering and production management – Martand Telsang (S. Chand)
7. Operations Management 2nd ed. – B. Mahadevan. (Pearson)
Course Objectives:
Explain principles of various theories of computer aided designing involved along with their industrial applications. Study the design process of any product or operation and how CAD improvises it by increasing the efficiency and accuracy of the process. Study the manual & Computer aided part programming and the various methods for CAPP.

Course Outcomes:
At the end of the course, the student shall be able to:
1. Understand 2-D and 3-D transformations of different object based on coordinate system and design the 2D and 3D surfaces and solids.
2. Understand the various types of curves.
3. Develop a part program using CNC Part Programming.
4. Analyze a part program using APT language.
5. Understand the applications of various CAPP techniques /methods.

Syllabus Contents
Unit-1
Introduction of CAD/CAM, Co-ordinate system in CAD, 2D & 3D Transformation:-Scaling, Rotation, Shearing, Translations & Reflection, introduction of Part family and Group Technology.

Unit-2
Representation of parametric and non-parametric curves, Types of curves (analytic & synthetic curves), Geometric modeling, representation and types of surfaces.
Unit-3
Introduction to FEM and FEA, Basic Concepts of FEM, Meshing, Element Selection, Types of Analysis

Unit-4
Introduction of CAPP & its type (variant, generative and hybrid CAPP), NC part programming, APT programming, advances in CAD/CAM (Agile & Lean manufacturing, concurrent Engineering and reverse engineering)

Unit-5

Reference Books:
1. CAD/CAM by Groover and Zimmer
2. CAD/CAM Theory and Practice, Ibrahim-Zeid, TATA McGraw Hill
3. CAD/CAM/CIM – P. Radhakrishnan, New age international.
4. Mathematical Elements of Computer graphics- Rogers and Adams
5. Computer Aided Design – Besant and Lui, PHI
MMTA-103-3 Total Quality Management

No. of Credits: 3 Sessional: 25 Marks
L T P Total
3 0 0 3 Theory: 75 Marks
Total: 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To have an insight into the concepts and dimensions of quality and total quality management.
Analyze the enablers for TQM Environment and their impact thereof. Understand the hard options and soft options TQM Develop Knowledge of tools & techniques, quality awards.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand the basic concepts of quality.
2. Analyse the TQM environment.
3. Analyze the role of soft options in TQM.
4. Evaluate the quality initiatives in organizations.
5. Analyze the impact of TQM.

Syllabus Contents
Unit 1: Introduction
Quality – Basic concepts, dimensions, economics of quality, quality Gurus.
TQM: Definition, evolution, journey from inspection to TQM, comparison at different stages, dimensions of TQM, TQM viewpoints, reasons for adopting TQM.

Unit 2: Introspection to TQM environment
Sphere of TQM, components of TQM, TQM – Managing Total Quality, Factors affecting TQM environment, Classification and interaction among factors, Researchers’ viewpoint, TQM as a system, steps in TQM implementation, Roadblocks in TQM implementation, Reasons for TQM failure.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 3: Role of soft options in TQM
Hard vs. Soft factors, Role and expectation of employer, employee, customer and supplier from organization and vice versa. Human factors in TQM, Role of top management commitment, work culture, motivation, coordination, attitude, innovation.

Unit 4: Quality initiatives in organizations
Role of tools and techniques in TQM, Classification of tools and techniques – Problem identification, Data analysis, Graphical, Creativity, Company wide.
Brief description of Quality awards – MBNQA, Deming award, European quality award, Australian quality award.

Unit 5: TQM Effectiveness
Impact of TQM, Need and difficulty in measuring TQM effect, Parameters governing effect of TQM and the attributes thereof.

Reference Books:
1. Total Quality Management- Oakland (Butterworth – Heinamann Ltd.)
2. Managing for total quality from Deming to Taguchi and SPC - Logothetis N. (PHI)
3. Total Quality Control - Feigenbaum A.V. (MGH)
4. Total Quality Management - Besterfield Dale H (Pearson Education)
5. A slice by slice guide to TQM - John Gilbert (Affiliated East West Press)
6. The TQM toolkit – a guide to practical techniques for TQM”by Waller Jenny, Allen Derek and Burna Andrew (Kogan Page)
MMTA-103-4 Supply Chain Management

No. of Credits: 3
L T P Total
3 0 0 3

Sessional: 25 Marks
Theory : 75 Marks
Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study the concept of supply chain management, supply chain dynamics, supply chain performance measurement, key issues in supply chain, application of internet in SCM and various quantitative tools in SCM.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand the process for implementation of SCM.
2. Analyse the effect of various parameters on the Supply chain dynamics.
3. Analyse various issues related to SC performance.
4. Understand application of internet in SCM.
5. Implementation of various Quantitative tools for SCM.

Syllabus Contents:
Unit 1:
Overview of supply chain management: Introduction, Definitions of SCM, types of SCM, process for implementation of SCM, Parties involve in SC, Flows in supply chain, Goals of SCM, Obstacles to process integration in SC, Key issues in SC.

Unit 2:
Supply chain dynamics: Introduction, Bullwhip effect, Impact of Lead time, offshoring and outsourcing on SC dynamic and cost.
Unit 3:

Unit 4:

Unit 5:
IT Integration: Supply chain information system, Role of IT in SCM process, Business process Re-engineering, Internet and its applications in SCM.

Unit 6:
Quantitative tools for SCM: Introduction, Forecasting, Demand forecast, Forecasting strategy & technique, Management of Inventories in SC, Linear programming, Routing models, pricing decisions, Introduction to MCDM approach.

Reference Books:
2. Supply Chain Management, Strategy planning and operation by Chopra and Mendel, Prentice Hall.
MMTA-104-1 Foundry Technology

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory: 75 Marks
3 0 0 3 Total: 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study the basic concepts regarding design and manufacture of a component by various casting methods. To provide knowledge to students on the principles that guides production of sound engineering castings.

Course Outcomes:
At the end of the course, the student shall be able to:
1. Understand the basic concepts of foundry technology and applications of different materials in casting process.
2. Design the pattern and gating system for preparing the mould.
3. Describe the basic concepts of core and mould.
4. Explain the different types of special casting methods.
5. Discuss the various processes for improving or controlling the quality of casted product and environment of foundry shop.

Syllabus Contents:

Unit 1: Introduction to Foundry Technology, Advantage, limitations and applications of foundry technology. Castability and factors affecting castability. Ferrous and Non-ferrous casting metals.

Unit 2: Pattern: Pattern material, Types of patterns, Pattern allowances, Colour coding system for patterns, Numerical on pattern allowances.

Unit 3: Moulding: Mould material, properties of moulding sand, Main constituents of moulding sand, Classification of moulding sand, Preparation of moulding sand, Testing of moulding sand,
Methods of moulding. Core: Introduction, Characteristics of core, Types of core, Core making, Core chaplets, Core print, Core boxes.

Unit 4: Gating system: Requirements of gating system, elements of gating system, Types of gates, Types of risers, Calculation of pouring time and solidification time, Casting design considerations, Chills.

Unit 5: Special casting methods: Gravity die casting, Cold chamber die casting, Hot chamber die casting, Investment casting, Centrifugal casting, Shell mould casting, Continuous casting.

Unit 6: Fettling of castings, Casting inspection, repair and salvage of castings, Heat treatment of castings, Quality control of castings, Pollution control in foundry, modernization of foundry.

Reference Books:
3. Foundry practice - W.H. Salmon and E.N. Simons, Pitman
MMTA-104-2 Robotics Engineering

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory : 75 Marks
3 0 0 3 Total : 100 Marks
 Duration of Exam: 3 Hours

Course Objectives:
To study various techniques for robotic automation. To study kinematics of robot manipulation.
To study vision and sensing characteristics of robot. Various robot teaching methods, task
programming, robot level programming languages.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand the robotic automation strategies.
3. Task programming of robots.
4. Understand vision and sensing characteristics of robots.
5. General design consideration on trajectories motion of robots.

Syllabus Contents
Unit 1:
Introduction: Automation and Robotics, Historical Development, Definitions, Basic Structure of
Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals about Robot Technology, Factors related to use Robot Performance, Basic Robot Configurations and their
Relative Merits and Demerits, Types of Drive Systems and their Relative Merits, the Wrist &
Gripper Subassemblies. Concepts and Model about Basic Control System, Transformation and
Block Diagram of Spring Mass System, Control Loops of Robotic Systems, PTP and CP
Trajectory Planning, Different Types of Controllers, Control Approaches of Robots.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 2:

Unit 3:
Robotic Workspace & Motion Trajectory: Introduction, General Structures of Robotic Workspaces, Manipulations with n Revolute Joints, Robotic Workspace Performance Index, Extreme Reaches of Robotic Hands, Robotic Task Description.

Unit 4:
Robotic Motion Trajectory Design: Introduction, Trajectory Interpolators, Basic Structure of Trajectory Interpolators, Cubic Joint Trajectories. General Design Consideration on Trajectories:- 4-3-4 & 3-5-3 Trajectories, Admissible Motion Trajectories.

Unit 5:
Robot Teaching: Introduction, Various Teaching Methods, Task Programming, Survey of Robot Level Programming Languages, A Robot Program as a Path in Space, Motion Interpolation, WAIT, SIGNAL & DELAY Commands, Branching, Robot Language Structure, various Textual Robot Languages Such as VAL II, RAIL, AML and their Features, Typical Programming Examples such as Palletizing, Loading a Machine Etc,

Unit 6:

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 7:

Reference Books:
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-104-3 Machine Tool Dynamics

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory: 75 Marks
3 0 0 3 Total: 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study various theories of chatter in machine tools. To study damping characteristics of machine tools, dynamic characteristic of the cutting process and dynamic acceptance tests. To study single and multidegree freedom system of machine tools.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand the theories of chatter in machine tools.
2. Analyze damping characteristics of machine tools.
3. Analyze static and dynamic analysis of machine tools.
4. Understand single and multi-degree freedom system of machine tools.
5. Understand chatter in grinders.

Syllabus Contents
Unit 1:
Chatter in machine Tools, sources of chatter, primary chatter, regenerative chatter, chatter frequency, forced vibration for machine tools, forced vibration due to perturbation of the cutting process, forced vibration due to perturbation of equivalent elastic system, theories of machine tool chatter: Tlusty’s, Kudinovs, Toblas theories.

Unit 2:
Machine tool stability: dynamic characteristic of the cutting process, general procedure for assessing the dynamic characteristic of machine tool in single degree and many degree of freedom system, methods of reducing the instability in machine tool, dynamic acceptance tests

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 3:
Damping in machine tools: requirements of damping system, Viscous dampers, active dampers,

Unit 4:
Static and dynamic analysis of machine tools: lumped parameter method, finite element method,

Unit 5: Chatter in grinding machine.

Reference Books:
MMTA-104-4 Metal Forming Analysis

No. of Credits: 3
Sessional: 25 Marks

L T P Total
Theory : 75 Marks
3 0 0 3
Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study effects of temperature and strain rate in metal working and application of finite element methods to metal forming processes. To study plastic deformation problems for metal forming analysis and analysis of important metal forming processes.

Course Outcomes:
At the end of the course students will be able to
1. Understand application of finite element methods to metal forming processes.
2. Understand the formulations of plastic deformation problems for metal forming analysis.
3. Understand technology and analysis of important metal forming processes- forging, rolling, extrusion, wire drawing, sheet metal forming processes.
4. Understand the thermos-mechanical problem formulation.
5. Analyse the effect of friction and lubrication in hot and cold working of materials.

Syllabus Contents
Unit 1:

Unit 2:
Formulations of plastic deformation problems, application of theory of plasticity for solving metal forming problems using Slab method, Upper and lower Bound methods, Slip line field theory.
Unit 3:
Effects of temperature and strain rate in metal working, friction and lubrication in Hot and Cold working. Technology and analysis of important metal forming processes- Forging, Rolling, Extrusion. Wire drawing, Sheet Metal forming processes like Deep drawing, Stretch forming, Bending.

Unit 4:
Application of Finite Element Methods to Metal Forming Processes- special Discretization, Shape function, Stiffness matrices and their assembly, Implicit and explicit formulations, Elasto-plastic approximations, Lagrangian Vs Eularian schemes, Material integration schemes, auxiliary equations for contact, friction and incompressibility, Thermo-mechanical problem formulation, steady state solutions for Drawing, Forging, rolling and extrusion problems.

Unit 5:
Case Studies- analysis and validation of metal forming processes problems by standard softwares.

Unit 6:
Forming defects in products and their critical effects, remedies.

Unit 7:
An introduction to use of International standards in Metal Forming Problem solutions and system Design

Reference Books:
2. Theory of Elasticity- Dally and Riley

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-104-5 : MECHATRONICS PRODUCT DESIGN

No. of Credits: 3

L T P Total
3 0 0 3

Sessional: 25 Marks

Theory: 75 Marks

Total: 100 Marks

Duration of Exam: 3 Hours

Course Objectives:
To study application of latest mechatronics application in manufacturing system. To study interfacing of various hardware in mechatronics product design. To incorporate application of modern tools and CAD packages in mechanical engineering for enhancing product design values.

Syllabus:

UNIT 1.
System Transfer functions, first order system, second order system, systems in series, time constant, impulse input, step input and ramp input, Solution of numerical problems in time domain using Laplace transformation.

UNIT 2.
Design and selection of mechatronics components namely encoders and resolvers, stepper and servomotors, ball screws, solenoids, line actuators and controllers with application to CNC system. PLC and ladder programming.

UNIT 3.
Robots, components of a robot, robot languages and application of robots for automation. Consumer electronics products and design of a mechatronic products using software CAD packages like MATLAB and SIMULINK. Use of MATLAB for solution of mechanical engg. Problems.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
UNIT 4.
Product design for automatic assembly, orientation devices- active and passive devices, mechatronics application in parts orientation and escapement devices.

UNIT 5.
Pneumatic and Hydraulic Components and Circuits, Boolean algebra, Pneumatic sensors and amplifiers, Jet destruction devices, Logic devices, Schimit triggering devices, Developing pneumatic circuits for automatic die casting machine.

UNIT 6.

Course Outcomes (CO’s): At the end of the course, the student shall be able to:
- Understand various types of part orientation devices and escapement devices.
- Develop pneumatic systems and simulation for manufacturing plant automation.
- Conceptual design for mechatronics products based on potential custom requirements.
- Work with modern manufacturing tools and CAD packages.

Reference books:

NPTEL Video Lecture, Web: http://nptel.ac.in, Mechatronics Engineering Software available: Control-X supplied by Cyber Tech.
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-105 Manufacturing & Automation Lab-I

No. of Credits: 2
L T P Total
0 0 4 4

Sessional: 15 Marks
Theory: 35 Marks
Total: 50 Marks

Course Objectives:
1. To impart knowledge about the computerized machining and inspection methods in advanced manufacturing systems
2. To develop domain knowledge in the field of Computer Integrated Manufacturing (CIM)

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand the basic features of CNC Machining Centres and CNC Turning Centres
2. Develop the part program for machining some components on CNC Machining Centres and CNC Turning Centres through live demonstrations of machining examples
3. Acquire the basic knowledge of Automatic Guided Vehicles (AGVs) and Robotics
4. Learn the basic features of Coordinate Measuring Machine (CMM) and Machine Vision System

Syllabus Contents:
1. To study general features different parts and specifications of a CNC Machining Centre.
2. To prepare part program and machine a steel/cast iron/aluminium component on CNC Machining Centre.
3. To study general features, different parts and specifications of a CNC Turning Centre.
4. To prepare part program and machine a steel/cast iron/aluminium component on CNC Turning Centre.
5. To study Robot anatomy and related attributes (i.e. different types of joints, links, configurations, drive and control systems, end effectors and sensors used in robots).
7. To study some general features guidance technologies and traffic management system of Automated Guided Vehicles (AGVs).
8. To study different configurations, drive systems and software used in Coordinate Measuring Machine (CMM).
9. To study the basic concept of Machine Vision System
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-106 Manufacturing & Automation Lab-II

No. of Credits: 2 Sessional: 15 Marks
L T P Total Theory : 35 Marks
0 0 4 4 Total : 50 Marks

Course Objectives:
The objective of the course is to expose the students to the practice of welding using various manual, semiautomatic/automatic welding processes and to experimentally analyse the weld bead characteristics.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. To understand the principle of Welding processes and Welding power sources
2. To perform welding using different processes
3. To perform specific, allied and robotic welding processes
4. To analyse the Weld Bead Characteristics

Syllabus Contents:
1. To study the working principles of AC and DC Welding power sources
2. To make SMAW BUTT joint on Mild Steel base plates
3. To make SMAW T-Joint on Mild Steel base plates
4. To make SMAW Lap Joint on Mild Steel base plates
5. To study GMAW and make welded joint using the process
6. To study GTAW and make welded joint using the process
7. To study and practice cutting of mild steel plates using Oxy-fuel Gas Welding
8. To practice Under Water welding using SMAW process
9. To practice positional welding using robotic welding
10. To study the effect of welding parameters on Bead Characteristics using visual and metallurgical methods

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

RMI-101 Research Methodology and IPR

<table>
<thead>
<tr>
<th>No. of Credits: 3</th>
<th>Sessional: 25 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>L T P Total</td>
<td>Theory : 75 Marks</td>
</tr>
<tr>
<td>3 0 0 3</td>
<td>Total : 100 Marks</td>
</tr>
<tr>
<td></td>
<td>Duration of Exam: 3 Hours</td>
</tr>
</tbody>
</table>

Course Objectives:
The course has been developed with orientation towards research related activities and recognizing the ensuing knowledge as property. It will create consciousness for Intellectual Property Rights and its constituents. Learners will be able to perform documentation and administrative procedures relating to IPR in India as well as abroad.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understanding and formulation of research problem.
2. Analyze research related information, able to interpret and write research report.
3. Understand plagiarism and follow research ethics.
4. Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
5. Anticipate the importance of IPR in growth of individuals & nation and promote IPR related information among students in general & engineering in particular.
6. Understand current and emerging issues related to IP protection and its impact on research and development which ultimately leads to economic growth and social benefits.

Syllabus Contents:

Unit 2: Effective literature studies approaches, analysis Plagiarism, Research ethics.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 3: Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Reference Books:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

Semester II

MMTA-201 Manufacturing Technology

No. of Credits: 3
Sessional: 25 Marks
L T P Total
3 0 0 3
Theory : 75 Marks
Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
1. To study essential concepts of metal cutting using single point and multipoint cutting tools.
2. To study concept and application of modern machining processes.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. To understand the chip formation process, tool wears and related facts.
2. To select cutting tool materials, tool geometry and to design turning tool and form tools
3. To demonstrate the knowledge of milling, broaching and gear manufacturing operations and to design broach, milling cutters and gear hobs.
4. To demonstrate the knowledge of hole making operations with proper application and design of drills, reamers and boring tools
5. To understand the concept of various grinding processes and non conventional machining operations and apply this knowledge for machining of different materials.

Syllabus Contents:
Unit 1:
Tool Geometry, Tool & work piece material: Common work and Tool materials, Tool inserts, Specifications of inserts and tool holders, Physical principle in metal cutting: Chip formation and types of chips, work done in cutting, BUE on metal cutting, curling & contraction of chip, Effect of cutting fluid on cutting process, Machining economics, cutting power, Tool wear, lubrication and surface finish, cutting fluids.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 2:
Turning, Boring and threading tools: Operation, signature of single point tools, Design of single point turning tool, ISO tool shapes, design of flat and circular form tools, threading tools, chip breaking methods.

Unit 3:
Milling, Broaching, Gear cutting tools: Milling cutter design, design of broach, design of Gear hobs.

Unit 4:
Tools for holes: Hole Designs of Drill, Reamer and Boring tools.

Unit 5:
Grinding: Features of grinding process, characteristics, shapes, mounting, wear, turning, Dress of Abrasive tools, center type cylindrical grinding, centreless grinding, internal grinding, surface grinding, grinding fluid

Unit 6:

Reference Books:
1. Metal Cutting theory and cutting tool design:-v Arshinov Mir Publishers, Moscow, Allekseev Mir Publishers, Moscow
2. Cutting tools: P.H. Joshi, Wheeler Publishing
3. Theory of Metal cutting: E.M. Trent
4. Tool design: Donaldson
5. Production Technology: HMT, Tata Mcgraw Hill, New Delhi
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-202 Automation in Manufacturing

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory : 75 Marks
3 0 0 3 Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study various techniques of automatic material handling in a manufacturing organization. To understand the control strategies of automation. To study essential concepts of a system model in a mechanical system. To study interfacing of various hardware in mechatronics product design. To incorporate application of electronics and computer engineering in mechanical engineering for enhancing product design values.

Course Outcomes:
At the end of the course, the student shall be able to:
1. Understand the effect of manufacturing automation strategies.
2. Understand the basic principles of mechatronics and microprocessors.
3. Analyze appropriate sensors and transducers and devise an instrumentation system.
4. Develop system model for mechanical system.
5. Understand the working principles of various types of material handling systems.
6. Analyze the control Technologies of automation.

Syllabus Contents
Unit 1:
Unit 2:

Unit 3:

Unit 4:
Principles of Electronic system communication, Signal conditioning, Interfacing, A.D. and D.A. convertors, Basic system models, Mathematical models, Mechanical and other system building blocks. System models for Rotational-translation, Electro-mechanical and Hydraulic-mechanical system.

Unit 5:
Material Handling Systems: Overview of Material Handling Systems- rotary feeders, oscillating force feeder, vibratory feeder, elevator type and centrifugal type feeders, Principles and design consideration, Material transport systems, Storage systems.

Unit 6:
Reference Books:
4. Computer Based Industrial Control, Krishna Kant, PHI
Course Objectives:
To develop project within time, resource & budget, types of projects, project life cycle and decisions. To align project execution with strategies. To identify project issues clearly and come up with new solutions.

Course Outcomes:
At the end of the course the students should be able to:
1. Understand about the types of projects & project life cycle.
2. Complete understanding about development of project network.
3. Understand about the crashing of a project.
4. Understand Project evaluation & review technique (PERT) & Critical path method (CPM).
5. Understand how to control & monitor a project.

Syllabus Contents:
Unit 1:
Introduction & Overview: Definitions, Types of projects, Project life cycle (Project phases) and decisions.

Unit 2:
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

Unit 3:
Development of Project Network: Project description, Work break down structure, Nomenclature, Rules for drawing and representation, consistency and Redundancy in Project Networks, Matrix representation.

Unit 4:
Basic Scheduling with Networks (Forward & Backward Pass)

Unit 5:
CPM & PERT: Activity times, Completion, Floats, Probability (ND usage), Examples, and Problems.

Unit 6:

Unit 7:
Role of Human Factors: Dealing with people Team Building and Leadership in Projects, commitment, work culture, motivation, coordination, attitude, innovation.

Unit 8:
Project Completion, Review and Future Directions

Reference Books:

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-203-2 Mechanical Behavior of Materials

No. of Credits: 3
L T P Total
3 0 0 3

Sessional: 25 Marks
Theory: 75 Marks
Total: 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study plastics, composites, smart materials and non-material. To study improvement in design parameters using non-common metal and analysis of various properties for plastic components, manufacturing techniques of plastics materials.

Course Outcomes:
At the end of the course students will be able to
1. Understand the improvement in design parameters using plastics.
2. Understand the improvement in design parameters using composites.
3. Understand the improvement in design parameters using smart materials.
4. Understand the improvement in design parameters using nano-materials.
5. Understand the improvement in design parameters using composites in aircraft structure.

Syllabus Contents:
Unit 1:
Introduction: Modern materials in design- plastics, composites, smart materials and nanomaterials, Weight reduction using plastics and composites, Properties and uses of plastics, composites, smart materials and nanomaterials in the design of mechanical equipments. Estimation of factor of safety in design.

Unit 2:
Design of Plastic Components: Analysis of various properties for plastic components, manufacturing techniques of plastics, Various design considerations for plastic components, Applications of plastics in design of mechanical equipments, Mechanical properties of glass filled –polyphenylene, glass filled -polyethylene and glass filled-polyurethane.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 3:
Design of Composite Structure: Structure and specific properties of composites, polymer-composite properties and application in aircraft industry, Prediction of service life, Main stages in composite structure design, Technological concept and production structure, Application of composites in passengers aircraft structures, Types of composite joints and their applications, Mechanical joint design, Stress concentration and hole geometry.

Unit 4:
Characteristics of particulate composite materials, Metal-matrix composites, Fatigue failure in particulate composite material, Design and manufacturing of particulate composites, Shot peening for improving fatigue and mechanical properties of particulate composite materials, Mechanical properties of Aluminium-silicon carbide, Aluminium-alumina, Aluminium-boron fibre particulate composites.

Unit 5:
Smart Materials: Design and various characteristics of smart materials, Application of smart materials for design of intelligent structures, Smart paint, Modeling analysis and design of simple mechanical systems using smart materials.

Unit 6:

Reference Books:
2. Smart Materials and Structures, M.V. Gandhi and B.S. Thomson, Chapman & Hall.
No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory: 75 Marks
3 0 0 3 Total: 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study about Management, management functions, management model and theories of management. To study about organization system, managerial decision making, QFD and MIS.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand management functions.
2. Understanding about theories of management.
3. Understand about the organization as a system.
4. Understanding about the techniques of management, 5S, Kaizen, JIT, SCM, ERP, Six Sigma, TPM, TQM.
5. Understand usage of management techniques with applications.

Syllabus Contents
Unit 1:
Introduction: Definition, Management thoughts, Nature & purpose of management, Management- an art or science, Management vs. administration, Levels of management and skills required, Management functions, Branches of management, Management model.

Unit 2:
Theories of management: Traditional Management theory: Taylor’s Theory, Scientific Management, Henry Fayol’s management Theory, Behavioural Theory: comparison of traditional and behaviourl theory, Maslow’s need hierarchy theory, Herzberg’s Two factor theory, Theory X and Theory Y, Contingency approach to management.
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

Unit 3:

Unit 4:
Management techniques: Conventional management tools, applications of cause & effect diagram, Pareto analysis, Force field analysis, QFD.

Unit 5:
Introduction to Japanese techniques- 5S, Kaizen, JIT, SCM, ERP, Six Sigma, TPM, TQM.

Unit 6:
Case studies.

Reference Books:
2. Management for Business and Industry - Claude S. George., PHI Private Ltd.
MMTA-203-4 Finite Element Methods

No. of Credits: 3
L T P Total
3 0 0 3

Sessional: 25 Marks
Theory : 75 Marks
Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study concepts of FEM, concepts of structural modeling, mathematical analysis of finite element method, computer implementation of finite element method, linear analysis and various non-linearity analysis.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand the theories of linear system for finite element analysis.
2. Understand the theories of non-linear system for finite element analysis.
3. Develop the formulation of problem for analysis.
5. Understand modeling of system with load, displacement and boundary conditions.

Syllabus Contents:
Unit 1:
Review of basic FEM concepts, FEM Discretization and the Direct Stiffness Method: Basic concepts of structural modeling, Review of the stiffness method of structural analysis, Modeling stiffness, loads and displacement boundary conditions.

Unit 2:
Formulation of Finite Elements: Mathematical interpretation of finite elements, variational formulation, Development of continuum elements, shape functions, consistent loads, Isoparametric elements for plane stress, Numerical integration, Convergence requirements.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD

Unit 4:
Advanced topics in linear problems: Static condensation and sub-structuring, Patch test and incompatible element, p-formulation, Advanced Beam, Plate and Shell elements: a) Timoshenko beam theory (shear locking) b) Plate and shell theory
 i. Thin plate and Mindlin plate (shear and membrane locking)
 ii. Mixed formulation for plate and shell
 iii. Degenerated shell formulation
Dynamic analysis using FEM:
 a. Consistent mass and lumped mass, mass lumping technique
 c. Stability, convergence and consistency
 d. Hyperbolic systems: structural dynamics and wave propagation
 e. Parabolic system: transient heat transfer
 f. Modal solution for natural frequencies and mode shapes
 g. Modal Superposition method for structural dynamics
Nonlinear analysis:
 a. Nonlinear solution procedures
 b. Newton-Raphson, modified Newton-Raphson, and secant methods
 c. Line search algorithm
 d. Automatic time step control

Unit 5:
Material nonlinearity:
 a. Rate independent elastoplasticity with return-mapping algorithm
 b. Isotropic and kinematic hardening with Baushinger effect
 c. Consistent tangent operator
 d. Objective rate and finite rotation elastoplasticity

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

e. Multiplicative decomposition and finite deformation elastoplasticity

Geometric nonlinearity:
 a. Generalized strain and stress
 b. Total and Updated Lagrangian formulation
 c. Kirchhoff stress and Cauchy stress

Boundary nonlinearity:
 a. Frictionless contact problems
 b. Penalty, Lagrange multiplier, augmented Lagrange multiplier, and perturbed Lagrange multiplier methods
 c. Frictional contact problems including frictional return-mapping algorithm
 d. Rigid-flexible contact and flexible-flexible contact
 e. Multiplicative decomposition and finite deformation elastoplasticity

Geometric nonlinearity:
 a. Generalized strain and stress
 b. Total and Updated Lagrangian formulation
 c. Kirchhoff stress and Cauchy stress

Boundary nonlinearity:
 a. Frictionless contact problems
 b. Penalty, Lagrange multiplier, augmented Lagrange multiplier, and perturbed Lagrange multiplier methods
 c. Frictional contact problems including frictional return-mapping algorithm
 d. Rigid-flexible contact and flexible-flexible contact

Assignments and Tutorials are essential part of this course. Various programming and formulation problems will be assigned through the course of study.

Reference Books:
MMTA-204-1 Material Management

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory : 75 Marks
3 0 0 3 Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
Study the basic concepts of materials management like productivity, techniques of materials management, purchasing in production process and cost reduction techniques. Illustrate the material requirement planning process like JIT, production planning, economic analysis and break even analysis.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand materials management techniques for productivity improvement.
2. Analyse the concept of materials planning with the theoretical concepts like break even analysis, JIT etc.
3. Apply different concepts of Purchasing while purchasing a material for the company.
4. Understand mathematical model the cost reduction techniques for reducing the cost & enhancing the profits of an organization.
5. Analyse inventory management techniques like EOQ for the efficient Inventory management of production plant.

Syllabus Contents
Unit 1:
Introduction: introduction to material management and productivity, functions of material management, organization structures in material management, role of material management techniques in improved material productivity.

Unit 2:
Material planning: objectives, material requirement planning, manufacturing resource planning, JIT production planning, strategic material planning, material control: acceptance, sampling,
inspection, make or buy decision, simple cost analysis, economic analysis, break even analysis, break-even point theory, whether to add or drop a product line store management and warehousing, product explosion.

Unit 3:
Purchasing: importance of good purchasing system, organization of purchasing functions, purchase policy and procedures, responsibility and limitations, purchasing decisions, purchasing role in new product development, role of purchasing in cost reduction, negotiations and purchase, purchasing research: identification of right sources of supply, vendor rating, standardization, vendor certification plans, vendor and supply reliability, developing new source of supply.

Unit 4:
Cost reduction: cost control v/s cost reduction, price analysis, material cost reduction techniques, variety reduction, cost reduction and value improvement, techniques of cost control, standard costing, cost effectiveness, cost analysis for material management, material flow cost control.

Unit 5:
Inventory management: inventory v/s stores, types of inventory, inventory control, inventory build –up, EOQ, various inventory models, inventory models with quantity discount, exchange curve concept, coverage analysis, optimal stocking and issuing policies, inventory management of perishable commodities, ABC – VED analysis, design of inventory distribution systems, surplus management, information system for inventory management, case studies.

Reference Books:
1. Material management :- W. R. Stelzer Jr. (PHI)
4. Material management- An integrated approach :- P. Gopal;akrishnan,& M. Sundersen (PHI)
MMTA-204-2 Quality control techniques

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory : 75 Marks
3 0 0 3 Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study about statistical concepts in quality control, quality control techniques, various control charts. Study about variables inspection and attributes inspection, relative merits and demerits. To study about special control charts for variables, group control chart total quality control.

Course Outcomes:
At the end of this course, the students will be able to:
1. Appraise the effectiveness of SPC tools in improving quality.
2. Evaluate process capability of a manufacturing system.
3. Analyze the state of statistical quality control using control charts for variables and attributes.
4. Utilization of the probability theory, binomial and Poisson distribution in inspection and sampling process.
5. Understand chance and assignable causes of quality variation for product quality control.

Syllabus Contents

Unit 1:
Statistical concepts in Quality Control, Graphical Representation of Grouped Data, Continuous and Discrete Probability Distributions, control limit Theorem,

Unit 2:
Introduction to Quality Control, process Control and Product Control, Chance and Assignable causes of Quality variation, Advantages of shewhart control charts, Process Control charts for variables, X, R and σ charts, fixation of control limits, Type I and Type II Errors, Theory of runs, Interpretation of Out of Control points, Probability limits, Initiation of control charts, Trial control limits, Determination of aimed at value of Process Setting, Rational method of sub
grouping, control chart parameters, control limits and specification limits, Natural tolerance limits, Relationship of a process in Control to upper and lower specification limits, process capability studies.

Unit 3:
Special control charts for variables, group control chart, arithmetic moving X and R charts, Geometric moving chart, control chart with reject limits, steady trend in Process average with constant dispersion, trend chart with sloping limits, variable subgroup size.

Unit 4:
Variables inspection and Attributes inspection, Relative merits and demerits, Control charts for Attributes, p chart and np chart, varying control limits, high defectives and low defectives, special severe test limits, C chart, U chart, Dodge demerit chart, Quality rating, CUSUM or Cumulative sum control chart, Average run length (ARL) Relative efficiency or sensitivity of control chart.

Unit 5:
Probability theory, binomial and Poisson distribution, Acceptance Inspection, 100% Inspection, No Inspection and sampling Inspection, operating characteristic curve (O.C. curve). Effect of sample size and Acceptance number, type A and type B O.C. curves, Single, Double and Multiple sampling Plans, SS Plan. Acceptance/Rejection and Acceptance/Rectification Plans, Producers Risk and Consumer’s Risk, Indifference Quality level, Average Outgoing quality (AOQ) curve, AOQL, quality protection offered by a sampling Plan, Average sample Number (ASN) curve, Average Total Inspection (ATI) curve.

Reference Books:
1. Statistical Quality control by E.L. Grant
2. Quality control and Industrial Statistics, by A.J. Duncan
3. Quality control by Dale H. Bestefield
4. Total Quality Control by A.Y. Feigenbaum

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
MMTA-204-3 Artificial Intelligence

No. of Credits: 3
Sessional: 25 Marks

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Theory: 75 Marks
Total: 100 Marks
Duration of Exam: 3 Hours

Course Objectives:

Study concept of artificial intelligence, overview of expert systems, the concepts AI in manufacturing problems. AI theory problems, problem spaces and search, Heuristic search technique and knowledge acquisition.

Course Outcomes:

At the end of the course, students will demonstrate their ability to:

1. Understand knowledge acquisition and knowledge representation.
2. Apply artificial intelligence in manufacturing.
3. Understand expert system application.
4. Analyze state-of-art expert system application.
5. Apply theoretical concepts to manufacturing problems.

Syllabus Contents

Unit 1:
Definition, basic concepts of artificial Intelligence, scope, role and potential of artificial intelligence in manufacturing, Expert systems, Popular AI application.

Unit 2:
Overview of Expert systems, architecture, comparison with procedural programming, developing Expert system for typical manufacturing domains, implementation and maintenance, state-of-art Expert system application, case study.
Unit 3:
AI theory problems, problem spaces and search, Heuristic search technique, Knowledge acquisition and knowledge representation, predicate logic, procedurals Declarative knowledge, forward V/s backward reasoning AI architecture, overview of advanced features, planning, learning, natural language processing, neural nets, fuzzy logic, object oriented programs.

Unit 4:
Case studies, examples of AI, theoretical concepts to manufacturing problems, CAD, CAPP, scheduling GT, CIM system. Domains welding, casting, forming, metal cutting, maintenance.

Reference Books:
2. Artificial Intelligence: A Modern Approach, Stuart Russel, Peter Norvig, PHI
3. Introduction to Prolog Programming - Carl Townsend.
4. PROLOG Programming For Artificial Intelligence - Ivan Bratko(Addison-Wesley)
No. of Credits: 3
L T P Total
3 0 0 3

Sessional: 25 Marks
Theory : 75 Marks
Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study industrial process of inspection, design consideration for gauges and measuring instruments. To study Indian and international standards for limits, fits, tolerances. To identify geometrical and physical limitations in measuring devices. To study surface texture of components.

Course Outcomes:
At the end of the course, the student should be able to
1. Analyse and Design different gauges like Plug gauge, Snap gauge.
2. Illustrate the aspects of thread and gear inspection.
3. Understand various techniques of surface roughness measurement.
4. Describe Geometrical and positional tolerances.
5. Explain limitations in measuring devices.

Syllabus Contents:
Unit 1:
Design consideration for Gauges and measuring instruments: material selection for gauges, NAS per Indian and international standards, design of plug gauge, snap gauge, center distance gauge.

Unit 2:
Inspection of threads and gears: thread gauge design; thread size measurement by two wire and three wire methods, vernier gear tooth gauge design.
Unit 3:
Surface textures: components of machined surface texture, specification of surface texture, surface roughness measuring device and techniques, design of pneumatic gauges in process gauging methods.

Unit 4:
Geometrical and positional tolerances.

Unit 5:
Geometrical and physical limitations in measuring devices.

Reference Books:
1. Metrology:- I .C. Gupta (Dhanpat Rai Pub.)
3. Metrology :- R. K. Jain
4. PSG design data book for Gauge design
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-205 Manufacturing & Automation Lab-III

No. of Credits: 2
L T P Total
0 0 4 4

Sessional: 15 Marks
Theory : 35 Marks
Total : 50 Marks

Course Objectives:
1. To impart knowledge about the cutting tools through live experiments
2. To develop domain knowledge in the field of metal cutting, conventional as well as non-conventional machining operations.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand various angles and parameters of single as well as multipoint tools.
2. Differentiate the kinds of chips produced in the machining of Aluminium and Mild Steel
3. Learn and perform the basic operations on EDM and Broaching machines through hole making operations
4. Manufacture the gears through Gear shaping machine
5. Demonstrate the knowledge to braze carbide tip on carbon steel shank and the effects of cutting fluid in machining operations

Syllabus Contents:
1. To identify various angles and parameters of various single point cutting tools
2. To identify various angles and parameters of various multipoint cutting tools
3. To grind various angles on a single point cutting tool.
4. To identify chips produced in turning of Aluminium, mild steel work piece at different speeds and feeds
5. To perform some hole making operations on Electro- Discharge Machine (EDM).
6. To study wear of cutting tool in turning.
7. To study surface finish by varying cutting parameters on surface grinding machine.
8. To cut a spur gear on gear shaping machine

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
9. To braze a carbide tip on a carbon steel tool shank.
10. To study effect of cutting fluid on machining.
11. To produce and inspect a splined/round hole on horizontal Broaching Machine.
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-206 Manufacturing & Automation Lab-IV

No. of Credits: 2
L T P Total
0 0 4 4
Sessional: 15 Marks
Theory : 35 Marks
Total : 50 Marks

Course Objectives:
To develop domain knowledge in the field of automation of mechanical equipment’s and select equipment’s for automation. To design various types of feeders. Study a variety of software’s for automation of mechanical equipment’s.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand the various practical demonstrations of automation of mechanical equipment’s.
2. To utilize the theories for designing feeder system.
3. Selection of equipment’s and practical demonstration.
4. Operation of variety of software.
5. Computer programming on CNC machine.

Syllabus Contents:
1. To study the hardware of a retrofit and CNC machine tools.
2. Selection of various equipment’s required with the specifications from Internet/Catalogue: To convert a manual machine tool/system into an automatic machine tool/system.
3. To write program with G code and M code for a component.
4. To simulate machining of component using machining software.
5. Study and applications of Hydraulic software.
6. Study and applications of Pneumatic software.
7. Study and applications of Robotic software.
8. Study and applications of PLC software.
9. To design an automated part feeder.
10. Developing pneumatic circuits for casting.
11. To simulate gear hobbing process and to calculate gear hobbing time.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-207 Mini-project

No. of Credits: 2
L T P Total
0 0 4 4

Sessional: 25 Marks
Theory: 75 Marks
Total: 100 Marks

Course Outcomes:
At the end of the course:
1. Students will get an opportunity to work in actual industrial environment if they opt for internship.
2. In case of mini project, they will solve a live problem using software/analytical/computational tools.
3. Students will learn to write technical reports.
4. Students will develop skills to present and defend their work in front of technically qualified audience.

Syllabus Contents:
Students can take up small problems in the field of design engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

Semester –III

MMTA-301-1 Advanced Theory of Vibrations

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory : 75 Marks
3 0 0 3 Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To study essential concepts for Mechanical Vibrations induced in various equipment. To study and analyze effects of vibrations in equipment. To study experimental methods in vibration analysis, vibration exciters, transducers and measurement devices.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Acquire knowledge of fundamentals of mechanical vibrations leading to analysis of single degree of freedom.
2. Understand the concept of two degree of vibration and vibration isolation and Transmissibility.
3. Analyse experimental methods for vibration analysis.
4. Understanding the influence and stiffness coefficients.
5. Analyse the concept of the non-linearity in vibrations.

Syllabus Contents
Unit 1:
Single degree of freedom systems, two degree of freedom systems: spring coupled, mass coupled, vibration absorbers, and vibration isolation.

Unit 2:
Multi degree of freedom systems: Lagrange’s equation, close couples and far coupled systems, dunker ley’s approximation method, rayleigh method, matrix method, matrix iteration,

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
orthogonality principle, orthogonality, expansion theorem and modal analysis, stodola method, holzer method, galerkin method, rayleigh-ritz method, myklested – prohl method for far coupled systems, transfer matrix method

Unit 3:
Experimental methods in vibration analysis: vibration instruments, vibration exciters, transducers and measurement devices, analyzers, vibration tests:- free and forced vibration tests.

Unit 4:

Unit 5:
Transient vibrations: duhamel’s integral, method of step input, phase plane method, method of laplace transformation, drop test spectra by laplace transformations.

Unit 6:

Reference Books:
1. Theory of vibration with applications:- W. T. Thomson (PHI)
3. Mechanical vibration :- S. S. Rao (Addison Wesley)
4. Vibration and noise for Engineers :- Kewal Pujara (Dhanpat Rai and Co.)
5. Mechanical vibrations :- G. K. Grover and Nigam (Nem chand and sons)
6. An introduction to mechanical vibrations :- Steidel (John Wiley)
7. Elements of vibration analysis :- Meirovitch (TMH)
MMTA-301-2 Value Engineering

No. of Credits: 3
Sessional: 25 Marks
L T P Total
Theory : 75 Marks
3 0 0 3
Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
To enhance value of a component either by reducing cost or by increasing its function. To study how to improve resource efficiency. To reduce operational, maintenance cost and help industries in competing more successfully in market.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Comprehend the life cycle approach of the product and its relationship with value engineering.
2. Describe the types and uses of value.
3. Understand and interpret different functions of product design & their relationship.
4. Implement the phases of value engineering in the job.
5. Analyse the cost reduction techniques in value engineering.

Syllabus Contents

Unit 1:
Introduction, Life cycle of a Product, Definition, objectives and methodology of value Engineering, Comparison with other cost reduction techniques, unnecessary cost.

Unit 2:
Quantitative definition of values, alternatives to increase value, Type of value, estimation of Product Quality/performance.
Unit 3:
Functions: definition, types and relationship between different functions in design of a Product, functional cost, functional worth, test for poor value, aim of value engineering. Systematic approach, Phases of value engineering Job plan: General phase, information phase, function phase creation/speculation phase, evaluation phase, investigation phase, recommendation and implementation phase.

Unit 4:

Unit 5:
FAST diagramming: Critical path of function, How, why and when logic, supporting and all time functions, Ground rule for FAST diagram.

Reference Books:
1. Value Engineering – A systematic Approach -A.E. Mudge
2. Techniques of value analysis and value engineering - L.D. Miles
3. Value engineering for cost reduction and product improvement -H S Mittal
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-301-3 Design & Metallurgy of Welded Joints

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory : 75 Marks
3 0 0 3 Total : 100 Marks

Duration of Exam: 3 Hours

Course Objectives:
To study welding defects, control and design of welded joints. Study metallurgy and cost estimation of welded joints. To study destructive and non-destructive testing of welds, residual stresses and control of residual stresses.

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand to predict and control of distortion in welded joints.
2. Calculate cost estimation of welded joints.
3. Understand the effect of residual stress in welded joints.
4. Understand weld metallurgy: thermal effect of welding on parent metal
5. Develop the application of welding automation for enhancing productivity.

Course Contents
Unit 1:
Weld defects: common weld defects like weld cracks, LOP, LOF, porosity, blow holes etc., remedies and control, welding symbols.

Unit 2:
Cost analysis of welded joints: costing factors of welding jobs- fabrication cost, material cost, preparation cost, finishing cost, overhead cost etc., economy in preparation and welding a job, labour accomplishment factor, cost calculation of welded jobs.
Unit 3:
Prediction and control of distortion: calculation of longitudinal contraction, transverse contraction, angular contraction due to single weld pass, control of welded distortion, and calculation of shrinkage.

Unit 4:
Residual stresses: introduction, types, effect of thermal stresses, control of residual welding stresses. Destructive tests: equipment required and test piece geometry for tensile test, bend test, impact test, hardness test, brittle and fatigue failure tests, non-destructive tests for welds:-dye penetrate inspection, magnetic particle inspection etc.

Unit 5:
Weldability of metals: welding techniques, preparation of joints and electrode types for gray cast iron welding, aluminium welding, austenitic steels, titanium and its alloys. Weldability tests: definition and concept of weldability, purpose and types of weldability tests such as hot cracking test, root cracking tests, hydrogen induced cracking test, cruciform test.

Unit 6:

Reference Books:
2. Welding technology: - A. C. Devis
3. Welding and welding Technology: - Little (TMH)
4. Welding technology: - R. S. Parmar
5. AWS- welding handbook (IV – VI) Edition
6. Elements of machine design: - Pandya and shah.
MMTA-301-4: MAINTENANCE ENGINEERING

No. of Credits: 3
Sessional: 25 Marks
L T P Total
3 0 0 3
Theory : 75 Marks
Total : 100 Marks
Duration of Exam: 3 Hours

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand the importance of maintenance engineering.
2. Describe the types and uses of maintenance engineering.
3. Estimate systems reliability, availability and maintainability.
4. Gain the necessary knowledge about failure distributions and apply optimal maintenance policies.

Syllabus Contents

Unit 1: Principles and Practices of Maintenance Engineering
Introduction, Requirements of Maintenance Engineering Department, Basic Principles of maintenance Engineering — Importance and benefits of sound Maintenance systems – Maintenance organization – Definitions and terms used in Maintenance Engineering.

Unit 2: Types of Maintenance
Introduction, Planned Maintenance, Planned Maintenance Procedure, Basic Rules for Maintenance Schedule, Unplanned Maintenance, Preventive Maintenance-Basic Principle and objective, advantages, disadvantages, Corrective Maintenance- Basic Principle and objective, advantages, disadvantages, Basic requirements of Preventive maintenance, Condition Monitoring

Unit 3: Reliability, Availability & Maintainability (RAM)
Introduction, Definition of reliability, maintainability and availability; Failure data analysis, MTBF, MTBR, MTTR, Bath tub curve; Quantitative measures of maintainability and measures to assure maintainability; Fault tree analysis(FTA), Failure mode and effect analysis (FMEA),

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD

Unit 4: Optimal Maintenance Policies

Introduction, Factors affecting the maintenance policies, Maintenance categories – Comparative merits of each category, Repair/Discard decisions – Factors affecting the R/D decisions, Cost comparison for R/D decisions, optimal module size, safety in Maintenance, Economics of maintenance.

Text Books

1. Industrial Maintenance – H.P.Garg
3. Collacot R.A. - Mechanical fault diagnosis and condition monitoring
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

MMTA-302 Dissertation Phase-I

No. of Credits: 10 Sessional: 50 Marks
L T P Total Theory : 150 Marks
0 0 20 20 Total : 200 Marks

Course Outcomes:
At the end of the course:
1. Students will learn to survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.
2. Students will be able to use different experimental techniques.
3. Students will be able to use different software/computational/analytical tools.
4. Students will be able to design and develop an experimental set up/equipment/test rig.
5. Students will be able to conduct tests on existing set ups/equipments and draw logical conclusions from the results after analyzing them.
6. Students will be able to either work in a research environment or in an industrial environment.

Syllabus Contents:
The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

Semester –IV

MMTA-401 Dissertation Phase- II

<table>
<thead>
<tr>
<th>No. of Credits: 16</th>
<th>Sessional: 125 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>L T P</td>
<td>Theory : 375 Marks</td>
</tr>
<tr>
<td>0 0 32</td>
<td>Total : 500 Marks</td>
</tr>
</tbody>
</table>

Course Outcomes:
At the end of the course:
1. Students will develop attitude of lifelong learning and will develop interpersonal skills to deal with people working in diversified field will.
2. Students will learn to write technical reports and research papers to publish at national and international level.
3. Students will develop strong communication skills to defend their work in front of technically qualified audience.

Syllabus Contents:
It is a continuation of Project work started in semester III. He has to submit the report in prescribed format and also present a seminar. The dissertation should be presented in standard format as provided by the department. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study. .. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his guide.
OPEN ELECTIVES

OEC-101A Business Analytics

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory: 75 Marks
3 0 0 3 Total: 100 Marks

Duration of Exam: 3 Hours

Course objective
1. Understand the role of business analytics within an organization.
2. Analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of an organization.
3. To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making.
4. To become familiar with processes needed to develop, report, and analyze business data.
5. Use decision-making tools/Operations research techniques.
7. Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking and finance, sports, pharmaceutical, aerospace etc.

Course outcomes
1. Students will demonstrate knowledge of data analytics.
2. Students will demonstrate the ability of think critically in making decisions based on data and deep analytics.
3. Students will demonstrate the ability to use technical skills in predicative and prescriptive modeling to support business decision-making.
4. Students will demonstrate the ability to translate data into clear, actionable insights.

Contents:

Unit 3: Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

Unit 6: Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Reference Books:
2. Business Analytics by James Evans, persons Education.
Course Contents:

Unit-I: Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit-II: Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-IV: Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like, i. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Reference Books:
No. of Credits: 3
L T P Total
3 0 0 3
Sessional: 25 Marks
Theory : 75 Marks
Total : 100 Marks
Duration of Exam: 3 Hours

Course Outcomes:

At the end of the course, the student should be able to

1. Students should able to apply the dynamic programming to solve problems of discreet and continuous variables.
2. Students should able to apply the concept of non-linear programming
3. Students should able to carry out sensitivity analysis
4. Student should able to model the real world problem and simulate it.

Syllabus Contents:

Unit 1: Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models.

Unit 2: Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming.

Unit 3: Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT.

Unit 4: Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit 5: Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Reference Books:
OEC-104A Cost Management of Engineering Projects

No. of Credits: 3
L T P Total
3 0 0 3

Sessional: 25 Marks
Theory: 75 Marks
Total: 100 Marks
Duration of Exam: 3 Hours

Course contents:

Reference Books:
1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
2. Charles T. Horngren and George Foster, Advanced Management Accounting
3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.
OEC-105A Composite Materials

No. of Credits: 3 Sessional: 25 Marks
L T P Total Theory : 75 Marks
3 0 0 3 Total : 100 Marks
Duration of Exam: 3 Hours

Course Contents:

UNIT – V: Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

Text Books:

Reference Books:
SCHEME & SYLLABUS OF M.TECH - MANUFACTURING TECHNOLOGY & AUTOMATION

OEC-106A Waste to Energy

No. of Credits: 3
L T P Total
3 0 0 3

Sessional: 25 Marks
Theory: 75 Marks
Total: 100 Marks
Duration of Exam: 3 Hours

Course outcomes:

Unit-I: Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors.

Unit-IV: Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-V: Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
- Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

Reference Books:
Audit Courses

AUD-01A English for Research Paper Writing

No. of Credits: 0
L T P Total
2 0 0 2

Sessional: 25 Marks
Theory : 75 Marks
Total : 100 Marks
Duration of Exam: 3 Hours

Course objectives:
Students will be able to:
1. Understand that how to improve your writing skills and level of readability
2. Learn about what to write in each section
3. Understand the skills needed when writing a Title

Note: Ensure the good quality of paper at very first-time submission

Course Contents:

Unit 1: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness.

Unit 3: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

Unit 4: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature.

Unit 5: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 6: useful phrases, how to ensure paper is as good as it could possibly be the first-time submission.

Suggested Studies:
AUD-02A Disaster Management

No. of Credits: 0 Sessional: 25 Marks
L T P Total Theory : 75 Marks
2 0 0 2 Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives: - Students will be able to:
1. learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
2. critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
3. develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
4. critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in.

Unit 1: Introduction: Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit 3: Disaster Prone Areas in India: Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics.

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Unit 4: Disaster Preparedness and Management: Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data From Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.

Unit 6: Disaster Mitigation: Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

Suggested Readings:
2. Sahni, Pardeep Et.Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall Of India, New Delhi.
AUD-03A Sanskrit for Technical Knowledge

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

No. of Credits: 0
Sessional: 25 Marks
Theory: 75 Marks
Total: 100 Marks

Duration of Exam: 3 Hours

Course Objectives
1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world.
2. Learning of Sanskrit to improve brain functioning.
3. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power.
4. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature.

Course Contents:
Unit 1: Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.
Unit 3: Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

Suggested reading
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbhashtri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

Course Output:
Students will be able to
1. Understanding basic Sanskrit language.
2. Ancient Sanskrit literature about science & technology can be understood.
3. Being a logical language will help to develop logic in students.
Course Objectives
Students will be able to
2. Imbibe good values in students.
3. Let the should know about the importance of character

Course Outcomes:
At the end of the course, students will demonstrate their ability to:
1. Understand the importance of value in self-development.
2. Imbibe good values for personality development.
3. Apply positive thought process for betterment in life.
4. Understand the importance of character building in development of overall personality.

Course Contents:

Suggested reading

Course outcomes
Students will be able to
1. Knowledge of self-development
2. Learn the importance of Human values
3. Developing the overall personality
Aud-05A Constitution of India

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

No. of Credits: 0
Sessional: 25 Marks
Theory: 75 Marks
Total: 100 Marks
Duration of Exam: 3 Hours

Course Objectives:
Students will be able to:

1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
2. To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Unit 2: Philosophy of the Indian Constitution: Preamble, Salient Features.

Unit 4: Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

Suggested reading
1. The Constitution of India, 1950 (Bare Act), Government Publication.

Course Outcomes:
Students will be able to:
1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
Course Objectives:
Students will be able to:
1. Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
2. Identify critical evidence gaps to guide the development.

Course Contents:

Unit 2: Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

Unit 4: Professional development: alignment with classroom practices and follow-up support, Peer support. Support from the head teacher and the community. Curriculum and assessment. Barriers to learning: limited resources and large class sizes.
Unit 5: Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

Suggested reading

Course Outcomes:
Students will be able to understand:
1. What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
2. What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
3. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
Course Objectives
1. To achieve overall health of body and mind
2. To overcome stress

Course Contents:
Unit 1: Definitions of Eight parts of yog. (Ashtanga)

Unit 2 Yam and Niyam. Do’s and Don’t’s in life i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpribanidhan

Unit 3: Asan and Pranayam i) Various yog poses and their benefits for mind & body ii) Regularization of breathing techniques and its effects- Types of pranayama.

Suggested reading
1. ‘Yogic Asanas for Group Tarining-Part-I” : Janardan Swami Yogabhyasi Mandal, Nagpur
2. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

Course Outcomes:
Students will be able to:
1. Develop healthy mind in a healthy body thus improving social health also.
2. Improve efficiency
AUD-08A Personality Development through Life Enlightenment Skills

No. of Credits: 0 Sessional: 25 Marks
L T P Total Theory : 75 Marks
2 0 0 2 Total : 100 Marks
Duration of Exam: 3 Hours

Course Objectives
1. To learn to achieve the highest goal happily
2. To become a person with stable mind, pleasing personality and determination
3. To awaken wisdom in students

Course contents

Unit 1: Neetisatakam-Holistic development of personality
Verses- 19,20,21,22 (wisdom)
Verses- 29,31,32 (pride & heroism)
Verses- 26,28,63,65 (virtue)
Verses- 52,53,59 (dont’s)
Verses- 71,73,75,78 (do’s)

Unit 2: Approach to day to day work and duties.
Shrimad Bhagwad Geeta : Chapter 2- Verses 41, 47,48,
Chapter 3- Verses 13, 21, 27, 35, Chapter 6- Verses 5,13,17,23, 35,
Chapter 18- Verses 45, 46, 48.

Unit 3: Statements of basic knowledge.
Shrimad Bhagwad Geeta: Chapter2- Verses 56, 62, 68
Chapter 12 - Verses 13, 14, 15, 16,17, 18
Personality of Role model. Shrimad Bhagwad Geeta:
Chapter2- Verses 17, Chapter 3- Verses 36,37,42,
Chapter 4 - Verses 18, 38,39
Chapter18 – Verses 37,38,63

J.C. BOSE UNIVERSITY OF SCIENCE AND TECHNOLOGY, YMCA, FARIDABAD
Suggested reading
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath,Rashtriya Sanskrit Sansthanam, New Delhi.

Course Outcomes
Students will be able to
1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life.
2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
3. Study of Neetishatakam will help in developing versatile personality of students.